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COPPER CHA ZEOLITE CATALYSTS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 14/245,712, filed Apr. 4, 2014, which is a continuation of
U.S. application Ser. No. 13/790,973, filed Mar. 8, 2013, now
U.S. Pat. No. 8,735,311, issued May 27, 2014, which is a
continuation of U.S. application Ser. No. 12/480,360, filed
Jun. 8, 2009, now U.S. Pat. No. 8,404,203, issued Mar. 26,
2013, which is a divisional of U.S. patent application Ser. No.
12/038,423, filed on Feb. 27, 2008, now U.S. Pat. No. 7,601,
662, issued Oct. 13, 2009, which claims the benefit of priority
under 35 U.S.C. §119(e) to U.S. Provisional Application No.
60/891,835, filed on Feb. 27, 2007, the contents of each of
which is hereby incorporated by reference in its entirety.

TECHNICAL FIELD

Embodiments of the invention relate to zeolites that have
the CHA crystal structure, methods for their manufacture,
and catalysts comprising such zeolites. More particularly,
embodiments of the invention pertain to copper CHA zeolite
catalysts and methods for their manufacture and use in
exhaust gas treatment systems.

BACKGROUND ART

Zeolites are aluminosilicate crystalline materials having
rather uniform pore sizes which, depending upon the type of
zeolite and the type and amount of cations included in the
zeolite lattice, typically range from about 3 to 10 Angstroms
in diameter. Both synthetic and natural zeolites and their use
in promoting certain reactions, including the selective reduc-
tion of nitrogen oxides with ammonia in the presence of
oxygen, are well known in the art.

Metal-promoted zeolite catalysts including, among others,
iron-promoted and copper-promoted zeolite catalysts, for the
selective catalytic reduction of nitrogen oxides with ammonia
are known. Iron-promoted zeolite beta has been an effective
catalyst for the selective reduction of nitrogen oxides with
ammonia. Unfortunately, it has been found that under harsh
hydrothermal conditions, such as reduction of NOx from gas
exhaust at temperatures exceeding 500° C., the activity of
many metal-promoted zeolites begins to decline. This decline
in activity is believed to be due to destabilization of the zeolite
such as by dealumination and consequent reduction of metal-
containing catalytic sites within the zeolite. To maintain the
overall activity of NOx reduction, increased levels of the
iron-promoted zeolite catalyst must be provided. As the levels
of'the zeolite catalyst are increased to provide adequate NOx
removal, there is an obvious reduction in the cost efficiency of
the process for NOx removal as the costs of the catalyst rise.

There is a desire to prepare materials which offer low
temperature SCR activity and/or improved hydrothermal
durability over existing zeolites, for example, catalyst mate-
rials which are stable at temperatures up to at least about 650°
C. and higher.

SUMMARY

Aspects of the invention are directed to zeolites that have
the CHA crystal structure (as defined by the International
Zeolite Association), catalysts comprising such zeolites, and
exhaust gas treatments incorporating such catalysts. The cata-
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2

lyst may be part of an exhaust gas treatment system used to
treat exhaust gas streams, especially those emanating from
gasoline or diesel engines.

One embodiment of the present invention pertains to cop-
per CHA catalysts and their application in exhaust gas sys-
tems such as those designed to reduce nitrogen oxides. In
specific embodiments, novel copper chabazite catalysts are
provided which exhibit improved NH; SCR of NOx. The
copper chabazite catalysts made in accordance with one or
more embodiments of the present invention provide a catalyst
material which exhibits excellent hydrothermal stability and
high catalytic activity over a wide temperature range. When
compared with other zeolitic catalysts that find application in
this field, such as Fe Beta zeolites, copper CHA catalyst
materials according to embodiments of the present invention
offer improved low temperature activity and hydrothermal
stability.

One embodiment of the invention relates to a catalyst com-
prising a zeolite having the CHA crystal structure and a mole
ratio of silica to alumina greater than about 15 and an atomic
ratio of copper to aluminum exceeding about 0.25. In a spe-
cific embodiment, the mole ratio of silica to alumina is from
about 15 to about 256 and the atomic ratio of copper to
aluminum is from about 0.25 to about 0.50. In a more specific
embodiment, the mole ratio of silica to alumina is from about
25 to about 40. In an even more specific embodiment, the
mole ratio of silica to alumina is about 30. In one particular
embodiment, the atomic ratio of copper to aluminum is from
about 0.30 to about 0.50. In a specific embodiment, the atomic
ratio of copper to aluminum is about 0.40. In a specific
embodiment, the mole ratio of silica to alumina is from about
25 to about 40 and the atomic ratio of copper to aluminum is
from about 0.30 to about 0.50. In another specific embodi-
ment, the silica to alumina is about 30 and the atomic ratio of
copper to alumina is about 0.40.

In a particular embodiment, the catalyst contains ion-ex-
changed copper and an amount of non-exchanged copper
sufficient to maintain NOx conversion performance of the
catalyst in an exhaust gas stream containing nitrogen oxides
after hydrothermal aging of the catalyst. In one embodiment,
the NOx conversion performance of the catalyst at about 200°
C. after aging is at least 90% of the NOx conversion perfor-
mance of the catalyst at about 200° C. prior to aging. In a
particular embodiment, the catalyst contains at least about
2.00 weight percent copper oxide.

In at least one embodiment, the catalyst is deposited on a
honeycomb substrate. In one or more embodiments, the hon-
eycomb substrate comprises a wall flow substrate. In other
embodiments, the honeycomb substrate comprises a flow
through substrate. In certain embodiments, at least a portion
of the flow through substrate is coated with CaCHA adapted
to reduce oxides of nitrogen contained in a gas stream flowing
through the substrate. In a specific embodiment, at least a
portion of the flow through substrate is coated with Pt and
CuCHA adapted to oxidize ammonia in the exhaust gas
stream.

In embodiments that utilize a wall flow substrate, at least a
portion of the wall flow substrate is coated with CaCHA
adapted to reduce oxides of nitrogen contained in a gas stream
flowing through the substrate. In other embodiments, at least
a portion of the wall flow substrate is coated with Pt and
CuCHA adapted to oxidize ammonia in the exhaust gas
stream.

In a specific embodiment, a catalyst article comprises a
honeycomb substrate having a zeolite having the CHA crystal
structure deposited on the substrate, the zeolite having a mole
ratio of silica to alumina greater than about 15 and an atomic
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ratio of copper to aluminum exceeding about 0.25 and con-
taining an amount of free copper exceeding ion-exchanged
copper. In one embodiment, the free copper is present in an
amount sufficient to prevent hydrothermal degradation of the
nitrogen oxide conversion of the catalyst. In one or more
embodiments, the free copper prevents hydrothermal degra-
dation of the nitrogen oxide conversion of the catalyst upon
hydrothermal aging. The catalyst may further comprise a
binder. In particular embodiments, the ion-exchanged copper
is exchanged using copper acetate.

Other aspects of the invention relate to exhaust gas treat-
ment systems incorporating catalysts of the type described
above. Still other aspects relate to a process for the reduction
of'oxides of nitrogen contained in a gas stream in the presence
of' oxygen wherein said process comprises contacting the gas
stream with the catalyst described above.

Another aspect pertains to an exhaust gas treatment system
comprising an exhaust gas stream containing NOx, and a
catalyst described above effective for selective catalytic
reduction of at least one component of NOx in the exhaust gas
stream. Still another aspect pertains to an exhaust gas treat-
ment system comprising an exhaust gas stream containing
ammonia and a catalyst as described above effective for
destroying at least a portion of the ammonia in the exhaust gas
stream.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a graph depicting nitrogen oxides removal effi-
ciency (%), ammonia consumption (%) and N,O generated
(ppm) of CuCHA catalyst as a function of reaction tempera-
tures for CuCHA prepared according to the methods of
Example 1;

FIG. 1A is a graph depicting nitrogen oxides removal effi-
ciency (%), ammonia consumption (%) and N,O generated
(ppm) of CuCHA catalyst as a function of reaction tempera-
tures for CuCHA prepared according to the methods of
Examples 1 and 1A;

FIG. 2 is a graph depicting nitrogen oxides removal effi-
ciency (%), ammonia consumption (%) and N,O generated
(ppm) of CuCHA catalyst as a function of reaction tempera-
tures, for CuCHA prepared according to the methods of
Example 2;

FIG. 3 is a graph depicting nitrogen oxides removal effi-
ciency (%), ammonia consumption (%) and N,O generated
(ppm) of CuCHA catalyst as a function of reaction tempera-
tures for CuCHA prepared according to the methods of
Example 3;

FIG. 4 is a graph depicting nitrogen oxides removal effi-
ciency (%), ammonia consumption (%) and N,O generated
(ppm) of CuCHA catalyst as a function of reaction tempera-
tures for CuCHA prepared according to the methods of
Example 4;

FIG. 51s a graph depicting effects of CO, propene, n-octane
and water on the CuCHA SCR activity at various tempera-
tures;

FIG. 5A is a graph showing the amount of HCs that are
stored, released, deposited as coke and burnt-off coke for a
sample tested in accordance with Example 12A;

FIG. 5B is a bar chart showing hydrocarbon performance
of CuCHA compared with CuY and Fe beta zeolites in accor-
dance with Example 12A;

FIG. 6 is a graph depicting emissions of NH;, NOx (=NO+
NO,), N,O, and N, from the AMOX catalyst outlet, given as
ppm on a nitrogen atom basis prepared and aged according to
the method of Examples 13 and 14;
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FIG. 7 is a graph depicting nitrogen oxides removal effi-
ciency (%), ammonia consumption (%) and N,O generated
(ppm) of CuCHA catalyst as a function of reaction tempera-
tures, for CuCHA prepared according to the methods of
Example 16;

FIG. 8 is a graph depicting nitrogen oxides removal effi-
ciency (%), ammonia consumption (%) and N,O generated
(ppm) of CuCHA catalyst as a function of reaction tempera-
tures, for CuCHA prepared according to the methods of
Example 17;

FIG. 9 is a graph depicting nitrogen oxides removal effi-
ciency (%), ammonia consumption (%) and N,O generated
(ppm) of CuCHA catalyst as a function of reaction tempera-
tures for CuCHA prepared according to the methods of
Example 18;

FIGS. 10A,10B, and 10C are schematic depictions of three
exemplary embodiments of the emissions treatment system
of the invention;

FIG. 11 is UV/VIS of Example 22 and 22A; and

FIG. 12 is >’ Al MAS NMR spectra of Example 22 and
22A, compared with CHA and aged CHA samples.

DETAILED DESCRIPTION

Before describing several exemplary embodiments of the
invention, it is to be understood that the invention is not
limited to the details of construction or process steps set forth
in the following description. The invention is capable of other
embodiments and of being practiced or being carried out in
various ways.

In one embodiment of the invention, zeolites having the
CHA structure such as chabazite are provided. In one or more
embodiments, a zeolite having the CHA crystal structure and
a mole ratio of silica to alumina greater than about 15 and an
atomic ratio of copper to aluminum exceeding about 0.25 is
provided. In specific embodiments, the mole ratio of silica to
alumina is about 30 and the atomic ratio of copper to alumi-
num is about 0.40. Other zeolites having the CHA structure,
include, but are not limited to SSZ-13, LZ-218, Linde D,
Linde R, Phi, ZK-14, and ZYT-6.

Synthesis of the zeolites having the CHA structure can be
carried out according to various techniques known in the art.
For example, in a typical SSZ-13 synthesis, a source of silica,
a source of alumina, and an organic directing agent are mixed
under alkaline aqueous conditions. Typical silica sources
include various types of fumed silica, precipitated silica, and
colloidal silica, as well as silicon alkoxides. Typical alumina
sources include boehmites, pseudo-boehmites, aluminum
hydroxides, aluminum salts such as aluminum sulfate, and
aluminum alkoxides. Sodium hydroxide is typically added to
the reaction mixture, but is not required. A typical directing
agent for this synthesis is adamantyltrimethylammonium
hydroxide, although other amines and/or quaternary ammo-
nium salts may be substituted or added to the latter directing
agent. The reaction mixture is heated in a pressure vessel with
stirring to yield the crystalline SSZ-13 product. Typical reac-
tion temperatures are in the range of 150 and 180° C. Typical
reaction times are between 1 and 5 days.

Atthe conclusion of the reaction, the product is filtered and
washed with water. Alternatively, the product may be centri-
fuged. Organic additives may be used to help with the han-
dling and isolation of the solid product. Spray-drying is an
optional step in the processing of the product. The solid
product is thermally treated in air or nitrogen. Alternatively,
each gas treatment can be applied in various sequences, or
mixtures of gases can be applied. Typical calcination tem-
peratures are in the 400° C. to 700° C. range.
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CuCHA zeolite catalysts in accordance with one or more
embodiments of the invention can be utilized in catalytic
processes which involve oxidizing and/or hydrothermal con-
ditions, for example in temperatures in excess of about 600°
C., for example, above about 800° C. and in the presence of
about 10% water vapor. More specifically, it has been found
that CuCHA zeolite catalysts which have been prepared in
accordance with embodiments of the invention have
increased hydrothermal stability compared to CuY and
CuBeta zeolites. CuCHA zeolite catalysts prepared in accor-
dance with embodiments of the invention yield improved
activity in the selective catalytic reduction of NOx with
ammonia, especially when operated under high temperatures
of at least about 600° C., for example, about 800° C. and
higher, and high water vapor environments of about 10% or
more. CiCHA has high intrinsic activity that enables use of
lower amounts of catalyst material, which in turn should
reduce backpressure of honeycomb substrates coated with
washcoats of CuCHA catalysts. In one or more embodiments,
hydrothermal aging refers to exposure of catalyst to a tem-
perature of about 800° C. in a high water vapor environments
of about 10% or more, for at least about 5 to about 25 hours,
and in specific embodiments, up to about 50 hours.

Embodiments of this invention also pertain to a process for
abatement of NO, in an exhaust gas stream generated by an
internal combustion engine utilizing CuCHA zeolite catalysts
having a mole ratio of silica to alumina greater than about 15
and an atomic ratio of copper to aluminum exceeding about
0.25. Other embodiments pertain to SCR catalysts compris-
ing a CuCHA zeolite catalyst having a mole ratio of silica to
alumina greater than about 15 and an atomic ratio of copperto
aluminum exceeding about 0.25, and exhaust gas treatment
systems incorporating CuCHA zeolite catalysts. Still other
embodiments pertain to ammonia oxidation (AMOX) cata-
lysts and exhaust gas treatment systems incorporating AMOX
catalyst comprising a CaCHA zeolite catalyst having a mole
ratio of silica to alumina greater than about 15 and an atomic
ratio of copper to aluminum exceeding about 0.25. According
to one or more embodiments, catalysts and systems utilize
CuCHA catalysts having ion-exchanged copper and suffi-
cient excess free copper to prevent thermal degradation of the
catalysts when operated under high temperatures of at least
about 600° C., for example, about 800° C. and higher, and
high water vapor environments of about 10% or more.

Experimentation has indicated that improved performance
of catalysts in accordance with embodiments of the invention
is associated with Cu loading. While Cu can be exchanged to
increase the level of Cu associated with the exchange sites in
the structure of the zeolite, it has been found that it is benefi-
cial to leave non-exchanged Cu in salt form, for example, as
CuSO, within the zeolite catalyst. Upon calcination, the cop-
per salt decomposes to CuQO, which may be referred to herein
as “free copper” or “soluble copper.” According to one or
more embodiments, this free Cu is both active and selective,
resulting in low N,O formation when used in the treatment of
a gas stream containing nitrogen oxides. Unexpectedly, this
“free” Cu has been found to impart greater stability in cata-
lysts subjected to thermal aging at temperatures up to about
800° C.

While embodiments of the invention are not intended to be
bound by a particular principle, it is believed that the rela-
tively small channel openings of CHA do not permit large
molecular weight hydrocarbons (HCs) typical of diesel fuel
to enter and adsorb within the CuCHA structure. Unlike other
zeolites like Beta or ZSM5, CHA catalysts prepared accord-
ing to embodiments of the invention have a relatively low
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6

affinity for adsorbing these large molecular weight HC spe-
cies. This is a beneficial property for use in selective catalytic
reduction (SCR) catalysts.

In systems that utilize an SCR downstream from a diesel
oxidation catalyst (DOC), the properties of the CuCHA cata-
lysts provide one or more beneficial results according to
embodiments of the invention. During start-up and prolonged
low temperature operation, the SCR only or a diesel oxidation
catalyst (DOC) or DOC and catalyzed soot filter (CSF)
upstream of the CuCHA SCR are not fully activated to oxi-
dize the HCs. In accordance with one or more embodiments,
because the CuCHA SCR catalyst is not influenced by HCs at
low temperature, it remains active over a wider range of the
low temperature operation window. According to one or more
embodiments, low temperature refers to temperatures about
250° C. and lower.

According to one or more embodiments, the CuCHA cata-
lysts operate within a low temperature window. Over time in
an exhaust gas treatment system having a DOC pre-catalyst
downstream from the engine followed by an SCR catalystand
a CSF, or a DOC pre-catalyst upstream from a CSF and SCR,
the DOC will tend to activate for both low temperature light-
off and HC fuel burning. In such systems, it is beneficial if the
SCR catalyst can maintain its ability to operate at low tem-
peratures. Since the oxidation catalysts will lose their ability
to oxidize NO to NO,, it is useful to provide an SCR catalyst
that can treat NO as effectively as NO,. CuCHA catalysts
produced in accordance with embodiments of the invention
have the ability to reduce NO with NH; at low temperatures.
This attribute can be enhanced by the addition of non-ex-
changed Cu to the zeolite catalyst.

According to embodiments of the invention, the SCR cata-
lyst can be in the form of self supporting catalyst particles or
as a honeycomb monolith formed of the SCR catalyst com-
position. In one or more embodiments of the invention how-
ever, the SCR catalyst composition is disposed as a washcoat
or as a combination of washcoats on a ceramic or metallic
substrate, for example a honeycomb flow through substrate.

In a specific embodiment of an emissions treatment system
the SCR catalyst is formed from a Cu exchanged CHA zeolite
material having free copper in addition to ion-exchanged
coppet.

When deposited on the honeycomb monolith substrates,
such SCR catalyst compositions are deposited at a concen-
tration of at least about 0.5 g/in®, for example, about 1.3 g/in’
about 2.4 g/in® or higher to ensure that the desired NOx
reduction is achieved and to secure adequate durability of the
catalyst over extended use.

The term “SCR” catalyst is used herein in a broader sense
to mean a selective catalytic reduction in which a catalyzed
reaction of nitrogen oxides with a reductant occurs to reduce
the nitrogen oxides. “Reductant” or “reducing agent” is also
broadly used herein to mean any chemical or compound
tending to reduce NOx at elevated temperature. In specific
embodiments, the reducing agent is ammonia, specifically an
ammonia precursor, i.e., urea and the SCR is a nitrogen reduc-
tant SCR. However, in accordance with a broader scope of the
invention, the reductant could include fuel, particularly diesel
fuel and fractions thereof as well any hydrocarbon and oxy-
genated hydrocarbons collectively referred to as an HC
reductant.

Substrates

The catalyst compositions are disposed on a substrate. The
substrate may be any of those materials typically used for
preparing catalysts, and will usually comprise a ceramic or
metal honeycomb structure. Any suitable substrate may be
employed, such as a monolithic substrate of the type having



US 9,138,732 B2

7

fine, parallel gas flow passages extending therethrough from
an inlet or an outlet face of the substrate, such that passages
are open to fluid flow therethrough (referred to as honeycomb
flow through substrates). The passages, which are essentially
straight paths from their fluid inlet to their fluid outlet, are
defined by walls on which the catalytic material is disposed as
a washcoat so that the gases flowing through the passages
contact the catalytic material. The flow passages of the mono-
lithic substrate are thin-walled channels, which can be of any
suitable cross-sectional shape and size such as trapezoidal,
rectangular, square, sinusoidal, hexagonal, oval, circular, etc.
Such structures may contain from about 60 to about 400 or
more gas inlet openings (i.e., cells) per square inch of cross
section.

The substrate can also be a wall-flow filter substrate, where
the channels are alternately blocked, allowing a gaseous
stream entering the channels from one direction (inlet direc-
tion), to flow through the channel walls and exit from the
channels from the other direction (outlet direction). AMOX
and/or SCR catalyst composition can be coated on the flow
through or wall-flow filter. If a wall flow substrate is utilized,
the resulting system will be able to remove particulate matter
along with gaseous pollutants. The wall-flow filter substrate
can be made from materials commonly known in the art, such
as cordierite, aluminum titanate or silicon carbide. It will be
understood that the loading of the catalytic composition on a
wall flow substrate will depend on substrate properties such
as porosity and wall thickness, and typically will be lower
than loading on a flow through substrate.

The ceramic substrate may be made of any suitable refrac-
tory material, e.g., cordierite, cordierite-alumina, silicon
nitride, zircon mullite, spodumene, alumina-silica magnesia,
zircon silicate, sillimanite, a magnesium silicate, zircon, pet-
alite, alpha-alumina, an aluminosilicate and the like.

The substrates useful for the catalysts of embodiments of
the present invention may also be metallic in nature and be
composed of one or more metals or metal alloys. The metallic
substrates may be employed in various shapes such as corru-
gated sheet or monolithic form. Suitable metallic supports
include the heat resistant metals and metal alloys such as
titanium and stainless steel as well as other alloys in which
iron is a substantial or major component. Such alloys may
contain one or more of nickel, chromium and/or aluminum,
and the total amount of these metals may advantageously
comprise at least 15 wt. % of the alloy, e.g., 10-25 wt. % of
chromium, 3-8 wt. % of aluminum and up to 20 wt. % of
nickel. The alloys may also contain small or trace amounts of
one or more other metals such as manganese, coppet, vana-
dium, titanium and the like. The surface or the metal sub-
strates may be oxidized at high temperatures, e.g., 1000° C.
and higher, to improve the resistance to corrosion of the alloys
by forming an oxide layer on the surfaces the substrates. Such
high temperature-induced oxidation may enhance the adher-
ence of the refractory metal oxide support and catalytically
promoting metal components to the substrate.

In alternative embodiments, one or both of the CuCHA
catalyst compositions may be deposited on an open cell foam
substrate. Such substrates are well known in the art, and are
typically formed of refractory ceramic or metallic materials.
Washcoat Preparation

According to one or more embodiments, washcoats of
CuCHA can be prepared using a binder. According to one or
more embodiments use of a ZrO, binder derived from a suit-
able precursor such as zirconyl acetate or any other suitable
zirconium precursor such as zirconyl nitrate. In one embodi-
ment, zirconyl acetate binder provides a catalytic coating that
remains homogeneous and intact after thermal aging, for
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example, when the catalyst is exposed to high temperatures of
at least about 600° C., for example, about 800° C. and higher,
and high water vapor environments of about 10% or more.
Keeping the washcoat intact is beneficial because loose or
free coating could plug the downstream CSF causing the
backpressure to increase.

According to one or more embodiments, CitCHA catalysts
can be used as an ammonia oxidation catalyst. Such AMOX
catalysts are useful in exhaust gas treatment systems includ-
ing an SCR catalyst. As discussed in commonly assigned U.S.
Pat. No. 5,516,497, the entire content of which is incorpo-
rated herein by reference, a gaseous stream containing oxy-
gen, nitrogen oxides and ammonia can be sequentially passed
through first and second catalysts, the first catalyst favoring
reduction of nitrogen oxides and the second catalyst favoring
the oxidation or other decomposition of excess ammonia. As
described in U.S. Pat. No. 5,516,497, the first catalysts can be
a SCR catalyst comprising a zeolite and the second catalyst
can be an AMOX catalyst comprising a zeolite.

As is known in the art, to reduce the emissions of nitrogen
oxides from flue and exhaust gases, ammonia is added to the
gaseous stream containing the nitrogen oxides and the gas-
eous stream is then contacted with a suitable catalyst at
elevated temperatures in order to catalyze the reduction of
nitrogen oxides with ammonia. Such gaseous streams, for
example, the products of combustion of an internal combus-
tion engine or of a gas-fueled or oil-fueled turbine engine,
often inherently also contain substantial amounts of oxygen.
A typical exhaust gas of a turbine engine contains from about
2 to 15 volume percent oxygen and from about 20 to 500
volume parts per million nitrogen oxides, the latter normally
comprising a mixture of NO and NO,. Usually, there is suf-
ficient oxygen present in the gaseous stream to oxidize
residual ammonia, even when an excess over the stoichiomet-
ric amount of ammonia required to reduce all the nitrogen
oxides present is employed. However, in cases where a very
large excess over the stoichiometric amount of ammonia is
utilized, or wherein the gaseous stream to be treated is lacking
or low in oxygen content, an oxygen-containing gas, usually
air, may be introduced between the first catalyst zone and the
second catalyst zone, in order to insure that adequate oxygen
is present in the second catalyst zone for the oxidation of
residual or excess ammonia.

Metal-promoted zeolites have been used to promote the
reaction of ammonia with nitrogen oxides to form nitrogen
and H,O selectively over the competing reaction of oxygen
and ammonia. The catalyzed reaction of ammonia and nitro-
gen oxides is therefore sometimes referred to as the selective
catalytic reduction (“SCR”) of nitrogen oxides or, as some-
times herein, simply as the “SCR process”. Theoretically, it
would be desirable in the SCR process to provide ammonia in
excess of the stoichiometric amount required to react com-
pletely with the nitrogen oxides present, both to favor driving
the reaction to completion and to help overcome inadequate
mixing of the ammonia in the gaseous stream. However, in
practice, significant excess ammonia over such stoichiomet-
ric amount is normally not provided because the discharge of
unreacted ammonia from the catalyst to the atmosphere
would itself engender an air pollution problem. Such dis-
charge of unreacted ammonia can occur even in cases where
ammonia is present only in a stoichiometric or sub-stoichio-
metric amount, as a result of incomplete reaction and/or poor
mixing of the ammonia in the gaseous stream, resulting in the
formation therein of cha